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Physics H7A Fall 1998 (Strovink)

SOLUTION TO PROBLEM SET 1
Composed and formatted by E.A. Baltz and M. Strovink; proofed by D. Bacon

1. You may remember the law of cosines from
trigonometry. It will be useful for several parts
of this problem, so we will state it here. If the
lengths of the sides of a triangle are a, b, and c,
and the angle opposite the side c is ψ, then

c2 = a2 + b2 − 2ab cosψ

(a.) When two vectors add up to a third vector,
the three vectors form a triangle. If the angle
between a and b is θ, then the angle opposite
the side formed by c is 180◦ − θ.

The law of cosines then tells us that

|c|2 = |a|2 + |b|2 − 2|a||b| cos (180◦ − θ)

From trigonometry, remember that

cos (180◦ − θ) = − cos θ

which gives

|c|2 = |a|2 + |b|2 + 2|a||b| cos θ

We know that |a| + |b| = |c|. Squaring this
equation, we get

|c|2 = |a|2 + |b|2 + 2|a||b|

If we compare this with the equation above, we
can see that cos θ has to be equal to one. This
only happens when θ = 0◦. What this means is
that the two vectors are parallel to each other,
and they point in the same direction. If the an-
gle between them were 180◦, then they would be
parallel but point in opposite directions.

(b.) This part is simple. Just subtract the vec-
tor a from both sides to see that b = −b. The
only way that this can happen is if b = 0, the
zero vector.

(c.) This part can also be done by the law of
cosines. Like part (a.), we have the following
two equations

|c|2 = |a|2 + |b|2 + 2|a||b| cos θ
This is just the law of cosines again, where θ
is the angle between |a| and b|. The problem
states that

|c|2 = |a|2 + |b|2
Comparing this with the equation above, we find
that cos θ = 0. This happens at θ = ±90◦. This
means that the vectors must be perpendicular to
each other.

(d.) Yet again, we can use the law of cosines. If
the angle between a and b is θ, then the angle
between a and −b is 180◦ − θ. The lengths of
the sum and difference are

|a+ b|2 = |a|2 + |b|2 + 2|a||b| cos θ
|a− b|2 = |a|2 + |b|2 − 2|a||b| cos θ

For these to be equal, we need cos θ = 0, which
happens when θ = ±90◦. Again, this means that
the vectors are perpendicular.

(e.) Guess what? Yup, law of cosines. We know
that |a| = |b| = |a+ b|. Adding a to b is going
to look like two vectors stuck together to form
two sides of a triangle. If the angle between the
vectors is θ, the law of cosines gives

|a+ b|2 = 2|a|2 + 2|a|2 cos θ
where we have used the fact that a and b have
the same length. We also know that |a+b| = |a|.
Using this we get

|a|2 = 2|a|2 + 2|a|2 cos θ
Dividing by |a|2, we find a condition on the angle
θ

cos θ = −1
2

⇒ θ = 120◦
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2. K&K problem 1.2

We can use the dot product, also known as
the inner product, of two vectors here. Remem-
ber that

A ·B = |A||B| cos θ
where θ is the angle between the vectors. We can
use the formula for computing the dot product
from the vector components

A ·B = AxBx +AyBy +AzBz

The vectors are given as follows: A = 3̂i+ ĵ+ k̂
and B = −2̂i− 3̂j− k̂. Multiplying, we find that
A ·B = −10. We need the lengths of A and B.
Remember that |A|2 = A ·A. This tells us that
|A|2 = 11 and |B|2 = 14. Dividing, we find that

cos θ =
−10√
11 · 14 = −0.805

3. Using the formulas on the problem set, we
can convert the points on the surface of the
sphere to Cartesian coordinates.

x1 = R sin θ1 cosφ1

y1 = R sin θ1 sinφ1

z1 = R cos θ1

x2 = R sin θ2 cosφ2

y2 = R sin θ2 sinφ2

z2 = R cos θ2

As in problem 2, we need to know the length of
these vectors in order to calculate the angle be-
tween them from the dot product. It is fairly
obvious that the lengths of the vectors are just
R, because that is the radius of the sphere; we
will show this explicitly.

|(R, θ, φ)|2 = R2(sin2 θ cos2 φ

+ sin2 θ sin2 φ+ cos2 θ)

Using the fact that sin2 φ+ cos2 φ = 1, we get

|(R, θ, φ)|2 = R2
(
sin2 θ + cos2 θ

)

We can just repeat the previous step for θ now
and get

|(R, θ, φ)| = R

as we expected in the first place. Now we calcu-
late the dot product. Let x1 be the vector to the
first point and x2 be the vector to the second
point. We find that

x1·x2 = R2(sin θ1 sin θ2 cosφ1 cosφ2

+ sin θ1 sin θ2 sinφ1 sinφ2 + cos θ1 cos θ2)

This can be simplified if we remember the for-
mula for the cosine of a sum of two angles.

cos(θ ± φ) = cos θ cosφ ∓ sin θ sinφ

Using this formula, we get the result

x1·x2 = R2(sin θ1 sin θ2 cos(φ1 − φ2)
+ cos θ1 cos θ2)

To get the angle we just divide by the lengths
of each vector, which are both R. This gives the
final result.

cos θ12 = cos θ1 cos θ2

+ sin θ1 sin θ2 cos(φ1 − φ2)

4. This problem is an application of the results
of problem 3.

(a.) A straight tunnel between Sydney and New
York can be represented by the difference of the
vectors pointing to their locations. To say it an-
other way, the distance between the ends of two
vectors is the length of the difference of the vec-
tors. Adjusting for the fact that latitude and
longitude are not quite the same as the coordi-
nates θ and φ, we find the polar coordinates of
the cities.

XNY = (6370 km, 49◦, 286◦)
XSydney = (6370 km, 124◦, 151◦)

Converting to Cartesian coordinates (x, y, z) us-
ing the formulas from problem 3 we get

XNY = (1325 km,−4621 km, 4179 km)
XSydney = (−4619 km, 2560 km,−3562 km)
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The distance between New York and Sydney
through the earth is just |XNY −XSydney|. The
result of the calculation is

Distance = 12, 117 km

(b.) Using the result from problem 3 to calcu-
late the angle between Sydney and New York,
we find that cos θ12 = −0.809, thus θ12 = 144.0◦.
To calculate the distance along the earth’s sur-
face we need to express this angle in radians.
The conversion formula is

θ(radians) =
π

180◦
θ(degrees)

Thus θ12 = 2.513 radians. Multiplying this by
the radius of the earth, we get the “great circle”
distance between New York and Sydney:

Distance = 16, 010 km

5. K&K problem 1.6

This question asks you to prove the law of
sines using the cross product. Let A, B, and C
be the lengths of the vectors making the three
sides of the triangle. Let a, b and c be the an-
gle opposite each of those sides. The law of sines
states that

sin a

A
=
sin b

B
=
sin c

C

Remember that the length of the cross product
of two vectors is equal to the area of the paral-
lelogram defined by them. Remember also that
the the length of the cross product is equal to
the product of the lengths times the sine of the
angle between them: |A×B| = |A||B| sin θ. We
have three vectors to play with in this problem,
and using the cross product we can compute the
area of the triangle from any two of them. We
find that

Area = AB sin c = BC sin a = AC sin b

We just divide the whole thing by ABC and we
recover the law of sines.

6. K&K problem 1.11

Let A be an arbitrary vector and let n̂ be a
unit vector in some fixed direction. Show that

A = (A · n̂) n̂+ (n̂×A)× n̂
Form a triangle from the three vectors in this
equation. Let B = (A · n̂) n̂ and let C =
(n̂×A) × n̂. Let the angle between A and
n̂ be θ. What this formula does is to break up
the vectorA into a piece parallel to n̂ and a piece
perpendicular to n̂. B gives the parallel piece.
Its length is just |B| = |A| cos θ. The length of
the perpendicular piece must then be |A| sin θ.

Examining the vector C, we see that inside the
parentheses is a vector whose length is |A| sin θ
and is perpendicular to n̂. This vector is then
crossed into n̂. Since it is perpendicular to n̂,
the length of the final vector is |A| sin θ, which
is what we want. Now we are just concerned
with the direction. The first cross product is
perpendicular to the plane containing n̂ and A.
The second cross product is perpendicular to the
first, thus it is coplanar with n̂ and A. It is
also perpendicular to n̂. Thus it represents the
component of A that is perpendicular to n̂. Be
careful about the sign here.

A useful vector identity that you will be see-
ing again is the so-called “BAC-CAB” rule. It is
an identity for the triple cross product.

A×(B×C) = B(A ·C)−C(A ·B)
Its fairly obvious why this is called the BAC-
CAB rule. Using this rule, we see that

n̂×(n̂×A) = n̂(n̂ ·A)−A(n̂ · n̂)
This immediately gives

A = (A · n̂) n̂+ (n̂×A)×n̂
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Of course we haven’t derived the BAC-CAB rule
here. It’s a mess.

7. The idea in all of the parts of this problem
is that the plane must oppose any perpendicular
wind speed to maintain its straight path. If the
wind is blowing with a speed v perpendicular to
the path, the plane’s airspeed must be −v per-
pendicular to the path. The airspeed is u, the
wind speed relative to the ground is w, and the
ground speed is v = u +w. |u| = U0. Let the
total distance traveled be D.

(a.) No wind, w = 0 so u = v. T = D/U0.

(b.) Wind of speed W0 blowing parallel to the
path. When the wind is going with the plane,
v = W0 + U0, when it opposes the plane, the
ground speed is v = U0 − W0. The time for the
first leg is T1 = D/2(U0 +W0). The time for
the second leg is T2 = D/2(U0 − W0). The total
time is the sum

T =
D

2

(
1

U0 +W0
+

1
U0 − W0

)

This can be simplified, and we get the final an-
swer, which agrees with part (a.) when W0 = 0.

T =
DU0

U2
0 − W 2

0

(c.) Wind of speed W0 blowing perpendicular to
the path. This part is a little harder. The plane
will not be pointed straight along the path be-
cause it has to oppose the wind trying to blow it
off course. The airspeed of the plane in the per-
pendicular direction will be W0, and we know
what the total airspeed is, so we can calculate
the airspeed along the path.

U2
0 = U2

⊥ + U2
‖ ⇒ U‖ =

√
U2

0 − W 2
0

The wind has no component along the path of
motion, so the airspeed in the parallel direction
is the same as the ground speed in the parallel
direction. The ground speed is furthermore the
same on both legs of the trip. The final answer
again agrees with part (a.) when W0 = 0

T =
D√

U2
0 − W 2

0

(d.) Wind of speed W0 blowing at an angle θ
to the direction of travel. The plane again needs
to cancel the component of the wind blowing in
the perpendicular direction. The perpendicular
component of the wind speed is W0⊥ =W0 sin θ.
As in part (c.) the airspeed in the parallel direc-
tion can be computed

U2
0 = U2

⊥ + U2
‖ ⇒ U‖ =

√
U2

0 − W 2
0 sin

2 θ

In this case, the wind has a component along
the direction of travel. This parallel component
is W0‖ = W0 cos θ. On one leg of the trip, this
adds to the ground velocity. On the other leg, it
subtracts. This gives us the following formula:

T =
D

2

(
1√

U2
0 − W 2

0 sin
2 θ +W0 cos θ

+
1√

U2
0 − W 2

0 sin
2 θ − W0 cos θ

)

This can be simplified considerably:

T =
D

√
U2

0 − W 2
0 sin

2 θ

U2
0 − W 2

0

If you look at this carefully, you will realize that
it reduces to the correct answer for parts (a.),
(b.), and (c.) with the proper values for W0 and
θ. If θ = 90◦, the wind blows perpendicular to
the path and we get the result from part (c.). If
θ = 0◦, the wind blows parallel to the direction
of travel and we recover the result from part (b.).

(e.) (f.) This part requires some calculus. We
need to do a minimization of a function. What
this part asks is to study the travel time as a
function of wind speed for an arbitrary angle θ.
We need to consider the result from part (d.) as
a function of the wind speed:

T (W0) =
D

√
U2

0 − W 2
0 sin

2 θ

U2
0 − W 2

0
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For now we are going to ignore the fact that it
also depends on U0 and θ. Remember that func-
tions have maxima and minima at places where
the derivative vanishes, so we need to take the
derivative of T with respect to W0:

d

dW0
T (W0) = D

(2W0

√
U2

0 − W 2
0 sin

2 θ

(U2
0 − W 2

0 )2

− W0 sin2 θ√
U2

0 − W 2
0 sin

2 θ(U2
0 − W 2

0 )

)

The derivative is clearly zero when W0 = 0. In
this case the travel time T = D/U0 as in part
(a.). There is another case we have to worry
about though. We divide out what we can to
get an equation for another value where the
derivative vanishes

U2
0 sin

2 θ − W 2
0 sin

2 θ = 2U2
0 − 2W 2

0 sin
2 θ

This gives us the other point where the deriva-
tive is zero

W 2
0 = U2

0

2− sin2 θ

sin2 θ

Notice that this point always occurs when the
wind speed is greater than the air speed. No
progress can be made against the wind if this
is the case, so the trip cannot occur. The fi-
nal possibility to consider is the case where the
wind speed is the same as the air speed. Look-
ing at the formula, the time taken is infinite.
The only possibility is that the minimum is at
W0 = 0. The final piece of this problem is to
observe what happens to the “time taken” when
W0 > U0. For one thing, it becomes negative.
In some circumstances it can even become imag-
inary. There is really no interpretation of this
other than “ask a stupid question, get a stupid
answer”. The answer doesn’t make sense be-
cause the question didn’t make sense. The trip
cannot occur whenW0 > U0, so it is meaningless
to ask how long it would take.

8. A particle moves along the curve y = Ax2

and its x position is given by x = Bt.

(a.) We can just plug the x equation into the y
equation to get the y position as a function of

time, y = AB2t2. In vector form, the position is
then

r(t) = x̂Bt+ ŷAB2t2

(b.) The vector velocity is obtained from the vec-
tor position by differentiating with respect to t

v(t) =
d

dt
r(t) = x̂B + ŷ2AB2t

(c.) The vector acceleration is obtained from
the vector velocity by again differentiating with
respect to t

a(t) =
d

dt
v(t) = ŷ2AB2

(d.) The scalar speed is just the length of the
velocity vector. Remember that |A| = √

A ·A.

|v(t)| =
√
v(t)·v(t) =

√
B2 + 4A2B4t2

(e.) The vector average velocity is the integral
of the velocity vector over a time interval, di-
vided by the time interval. In general, the (time)
average of a quantity A is given by

〈A〉 = 1
(t2 − t1)

∫ t2

t1

A(t)dt

Applying this formula, we see the integral that
needs to be evaluated:

〈v(t0)〉 = 1
t0

∫ t0

0

v(t)dt

=
1
t0

∫ t0

0

(x̂B + ŷ2AB2t)dt

We could also use the fact that the integral of the
velocity is the position to get a simpler looking
formula for the average velocity

〈v(t0)〉 = 1
t0
(r(t0)− r(0))

Evaluating this integral, we get an answer that
is not surprising

〈v(t0)〉 = x̂B + ŷAB2t0
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This is just (r(t0)− r(0))/t0! The average veloc-
ity is just the distance traveled divided by the
time it took.

9. The idea behind this problem is to make a
graph of position vs. time data and show that
they fit the equation s = a(t − t0)2/2. In addi-
tion you are supposed to find t0. The way to
do this is to plot the square root of the distance
vs. time, which will give a straight line graph:√

s =
√
(a/2)(t − t0). The slope of this graph is

approximately 0.168, so we can use that to ex-
trapolate back to zero. We find that the graph
reaches zero at about t = −4.45, so this means
that t0 = −4.45 to make the distance traveled
equal zero at t = −4.45.


